37,073 research outputs found

    Compressibility of Interacting Electrons in Bilayer Graphene

    Full text link
    Using the renormalized-ring-diagram approximation, we study the compressibility of the interacting electrons in bilayer graphene. The compressibility is equivalent to the spin susceptibility apart from a constant factor. The chemical potential and the compressibility of the electrons can be significantly altered by an energy gap (tunable by external gate voltages) between the valence and conduction bands. For zero gap and a typical finite gap in the experiments, we show both systems are stable.Comment: 5 pages, 6 figure

    Absence of broken inversion symmetry phase of electrons in bilayer graphene under charge density fluctuations

    Full text link
    On a lattice model, we study the possibility of existence of gapped broken inversion symmetry phase (GBISP) of electrons with long-range Coulomb interaction in bilayer graphene using both self-consistent Hartree-Fock approximation (SCHFA) and the renormalized-ring-diagram approximation (RRDA). RRDA takes into account the charge-density fluctuations beyond the mean field. While GBISP at low temperature and low carrier concentration is predicted by SCHFA, we show here the state can be destroyed by the charge-density fluctuations. We also present a numerical algorithm for calculating the self-energy of electrons with the singular long-range Coulomb interaction on the lattice model.Comment: 8 pages, 6 figure

    Study of two-dimensional electron systems in the renormalized-ring-diagram approximation

    Full text link
    With a super-high-efficient numerical algorithm, we are able to self-consistently calculate the Green's function in the renormalized-ring-diagram approximation for a two-dimensional electron system with long-range Coulomb interactions. The obtained ground-state energy is found to be in excellent agreement with that of the Monte Carlo simulation. The numerical results of the self-energy, the effective mass, the distribution function, and the renormalization factor of the Green's function for the coupling constants in the range 0≤rs≤300 \le r_s \le 30 are also presented.Comment: 4 pages, 5 figure

    Fluctuation-Exchange Study of Antiferromagnetism in Electron-Doped Cuprate Superconductors with Disorder

    Full text link
    On the basis of the Hubbard model, we extend the fluctuation-exchange (FLEX) approach to investigating the properties of antiferromagnetic (AF) phase in electron-doped cuprate superconductors. Furthermore, by incorporating the effect of scatterings due to the disordered dopant-atoms into the FLEX formalism, our numerical results show that the antiferromagnetic transition temperature, the onset temperature of pseudogap due to spin fluctuations, the spectral density of the single particle near the Fermi surface, and the staggered magnetization in the AF phase as a function of electron doping can consistently account for the experimental measurements.Comment: 4 pages, 5 figure
    • …
    corecore